Intermittent photocatalytic activity of single CdS nanoparticles.

نویسندگان

  • Yimin Fang
  • Zhimin Li
  • Yingyan Jiang
  • Xian Wang
  • Hong-Yuan Chen
  • Nongjian Tao
  • Wei Wang
چکیده

Semiconductor photocatalysis holds promising keys to address various energy and environmental challenges. Most studies to date are based on ensemble analysis, which may mask critical photocatalytic kinetics in single nanocatalysts. Here we report a study of imaging photocatalytic hydrogen production of single CdS nanoparticles with a plasmonic microscopy in an in operando manner. Surprisingly, we find that the photocatalytic reaction switches on and off stochastically despite the fact that the illumination is kept constant. The on and off states follow truncated and full-scale power-law distributions in broad time scales spanning 3-4 orders of magnitude, respectively, which can be described with a statistical model involving stochastic reactions rates at multiple active sites. This phenomenon is analogous to fluorescence photoblinking, but the underlying mechanism is different. As individual nanocatalyst represents the elementary photocatalytic platform, the discovery of the intermittent nature of the photocatalysis provides insights into the fundamental photochemistry and photophysics of semiconductor nanomaterials, which is anticipated to substantially benefit broad application fields such as clean energy, pollution treatment, and chemical synthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization and Photocatalytic Activity of ZnO, ZnS, ZnO/ZnS, CdO, CdS and CdO/CdS Nanoparticles in Mesoporous SBA-15

Grinding (solvent-free) method was used as a superior technique to prepare mesoporous photocatalysts of ZnO, ZnS, ZnO / ZnS, CdO, CdS and CdO / CdS-SBA-15. In this technique, the nitrate, acetate and chloride salts of zinc and/or cadmium were grinded with as-synthesized SBA-15 as a mesoporous material. The controllable sulfurationis was used to prepare ZnS, ZnO/ZnS, CdS and CdO/CdS-SBA-15 a...

متن کامل

One-pot controlled synthesis of sea-urchin shaped Bi2S3/CdS hierarchical heterostructures with excellent visible light photocatalytic activity.

In this study, sea-urchin shaped Bi2S3/CdS hierarchical heterostructures are successfully synthesized via a convenient one-pot growth rate controlled route. The product is mainly composed of Bi2S3 nanorods and CdS nanoparticles grown on their surfaces. The formation mechanism was proposed based on the evolution of morphology as a function of solvothermal time, which involves fast formation of t...

متن کامل

Preparation and enhanced visible-light photocatalytic H2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets.

CdS-sensitized Pt/TiO(2) nanosheets with exposed (001) facets were prepared by hydrothermal treatment of a Ti(OC(4)H(9))(4)-HF-H(2)O mixed solution followed by photochemical reduction deposition of Pt nanoparticles (NPs) on TiO(2) nanosheets (TiO(2) NSs) and chemical bath deposition of CdS NPs on Pt/TiO(2) NSs, successively. The UV and visible-light driven photocatalytic activity of the as-prep...

متن کامل

Highly Efficient Photocatalytic Hydrogen Production of Flower-like Cadmium Sulfide Decorated by Histidine

Morphology-controlled synthesis of CdS can significantly enhance the efficiency of its photocatalytic hydrogen production. In this study, a novel three-dimensional (3D) flower-like CdS is synthesized via a facile template-free hydrothermal process using Cd(NO3)2•4H2O and thiourea as precursors and L-Histidine as a chelating agent. The morphology, crystal phase, and photoelectrochemical performa...

متن کامل

Plasmonic Au nanoparticles embedding enhances the activity and stability of CdS for photocatalytic hydrogen evolution.

The activity and stability of CdS for visible-light-driven hydrogen evolution could be significantly enhanced by embedding plasmonic Au nanoparticles. The plasmon resonance energy field of Au nanoparticles could increase the formation rate and lifetime of e(-)/h(+) pairs in CdS semiconductors.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 40  شماره 

صفحات  -

تاریخ انتشار 2017